Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(11): 101251, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37890486

RESUMO

Evidence on whether prior antibiotic (pATB) administration modulates outcomes of programmed cell death protein-1 (PD-1) inhibitors in advanced gastric cancer (AGC) is scarce. In this study, we find that pATB administration is consistently associated with poor progression-free survival (PFS) and overall survival (OS) in multiple cohorts consisting of patients with AGC treated with PD-1 inhibitors. In contrast, pATB does not affect outcomes among patients treated with irinotecan. Multivariable analysis of the overall patients treated with PD-1 inhibitors confirms that pATB administration independently predicts worse PFS and OS. Administration of pATBs is associated with diminished gut microbiome diversity, reduced abundance of Lactobacillus gasseri, and disproportional enrichment of circulating exhaustive CD8+ T cells, all of which are associated with worse outcomes. Considering the inferior treatment response and poor survival outcomes by pATB administration followed by PD-1 blockade, ATBs should be prescribed with caution in patients with AGC who are planning to receive PD-1 inhibitors.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico , Neoplasias Gástricas , Humanos , Antibacterianos/administração & dosagem , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/imunologia
2.
J Clin Oncol ; 41(27): 4394-4405, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37364218

RESUMO

PURPOSE: Trastuzumab-containing chemotherapy is the recommended first-line regimen for human epidermal growth factor receptor 2 (HER2)-positive advanced gastric or gastroesophageal junction (G/GEJ) cancer. We evaluated the safety and efficacy of trastuzumab combined with ramucirumab and paclitaxel as second-line treatment for HER2-positive G/GEJ cancer. PATIENTS AND METHODS: Patients with HER2-positive advanced G/GEJ cancer who progressed after first-line treatment with trastuzumab-containing chemotherapy were enrolled from five centers in the Republic of Korea. Patients were administered a 28-day cycle of trastuzumab (once on days 1, 8, 15, and 22: 2 mg/kg followed by 4 mg/kg loading dose), ramucirumab (once on days 1 and 15: 8 mg/kg), and paclitaxel (once on days 1, 8, and 15: dose level 1, 80 mg/m2; or dose level -1, 70 mg/m2). Phase II was conducted with the recommended phase II dose (RP2D). Primary end points were determination of RP2D during phase Ib and investigator-assessed progression-free survival (PFS) in patients treated with RP2D. RESULTS: Dose-limiting toxicity at dose level 1 was not documented during phase Ib, and a full dose combination was selected as the RP2D. Among 50 patients with a median follow-up duration of 27.5 months (95% CI, 17.4 to 37.6), median PFS and overall survival were 7.1 months (95% CI, 4.8 to 9.4) and 13.6 months (95% CI, 9.4 to 17.7), respectively. Objective response rate was 54% (27 of 50, including one complete response), and disease control rate was 96% (48 of 50). Loss of HER2 expression was observed in 34.8% (8 of 23) patients after first-line treatment, and no definite association between HER2 expression and the outcome was revealed. Safety profiles were consistent with previous reports. CONCLUSION: Trastuzumab combined with ramucirumab and paclitaxel showed appreciable efficacy with manageable safety profiles in patients with previously treated HER2-positive G/GEJ cancer.


Assuntos
Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Trastuzumab , Paclitaxel , Intervalo Livre de Doença , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Junção Esofagogástrica/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ramucirumab
3.
J Ginseng Res ; 47(3): 479-491, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37252280

RESUMO

Background: Hepatocellular carcinoma (HCC) has a high incidence and is one of the highest mortality cancers when advanced stage is proceeded. However, Anti-cancer drugs available for treatment are limited and new anti-cancer drugs and new ways to treat them are minimal. We examined that the effects and possibility of Red Ginseng (RG, Panax ginseng Meyer) as new anti-cancer drug on HCC by combining network pharmacology and molecular biology. Materials and Methods: Network pharmacological analysis was employed to investigate the systems-level mechanism of RG focusing on HCC. Cytotoxicity of RG was determined by MTT analysis, which were also stained by annexin V/PI staining for apoptosis and acridine orange for autophagy. For the analyze mechanism of RG, we extracted protein and subjected to immunoblotting for apoptosis or autophagy related proteins. Results: We constructed compound-target network of RG and identified potential pathways related to HCC. RG inhibited growth of HCC through acceleration of cytotoxicity and reduction of wound healing ability of HCC. RG also increased apoptosis and autophagy through AMPK induction. In addition, its ingredients, 20S-PPD (protopanaxadiol) and 20S-PPT (protopanaxatriol), also induced AMPK mediated apoptosis and autophagy. Conclusion: RG effectively inhibited growth of HCC cells inducing apoptosis and autophagy via ATG/AMPK in HCC cells. Overall, our study suggests possibility as new anti-cancer drug on HCC by proof for the mechanism of the anti-cancer action of RG.

4.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163776

RESUMO

Liver cancer has relatively few early symptoms and is usually diagnosed in the advanced stage. Sorafenib is the only first-line anticancer drug approved by the Food and Drug Administration (FDA) for advanced HCC; however, its use is limited due to resistance. Therefore, the development of new drugs is essential to achieving customized treatment. Many studies have suggested that Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) is associated with metastasis and cancer formation and progression in various cancers. In the present study, YAP was overexpressed in various patient-derived hepatocarcinoma (HCC) tissues. In addition, this study examined whether evodiamine (which has anticancer effects) can inhibit YAP and, if so, modulate HCC. Evodiamine significantly reduced both the YAP level and cell growth of HCC in a dose-dependent manner. Biochemical analysis indicated mitochondria dysfunction-mediated apoptosis to be the cause of the reduction in HCC cell growth by evodiamine. YAP was overexpressed in metastatic HCC tissues as well when compared to primary HCC tissues. Migration and invasion analysis showed that evodiamine has anti-metastatic ability on Hep3B and Huh-7 cells and reduces the level of vimentin, an EMT marker. In conclusion, YAP is a critical target in HCC therapy, and evodiamine can be an effective HCC anticancer drug by reducing the YAP level.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Quinazolinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
5.
Biomolecules ; 11(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34944451

RESUMO

Chemotherapy is an essential strategy for cancer treatment. On the other hand, consistent exposure to chemotherapeutic drugs induces chemo-resistance in cancer cells through a variety of mechanisms. Therefore, it is important to develop a new drug inhibiting chemo-resistance. Although hemistepsin A (HsA) is known to have anti-tumor effects, the molecular mechanisms of HsA-mediated cell death are unclear. Accordingly, this study examined whether HsA could induce apoptosis in aggressive prostate cancer cells, along with its underlying mechanism. Using HsA on two prostate cancer cell lines, PC-3 and LNCaP cells, the cell analysis and in vivo xenograft model were assayed. In this study, HsA induced apoptosis and autophagy in PC-3 cells. HsA-mediated ROS production attenuated HsA-induced apoptosis and autophagy after treatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, autophagy inhibition by 3-MA or CQ is involved in accelerating the apoptosis induced by HsA. Furthermore, we showed the anti-tumor effects of HsA in mice, as assessed by the reduced growth of the xenografted tumors. In conclusion, HsA induced apoptosis and ROS generation, which were blocked by protective autophagy signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Cloroquina/administração & dosagem , Lactonas/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactonas/farmacologia , Masculino , Camundongos , Células PC-3 , Neoplasias da Próstata/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Lett ; 508: 59-72, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-33771684

RESUMO

The loss of cell-matrix interactions induces apoptosis, known as anoikis. For successful distant metastasis, circulating tumor cells (CTCs) that have lost matrix attachment need to acquire anoikis resistance in order to survive. Cell aggregate formation confers anoikis resistance, and CTC clusters are more highly metastatic compared to single cells; however, the molecular mechanisms underlying this aggregation are not well understood. In this study, we demonstrated that cell detachment increased cell aggregation and upregulated fibronectin (FN) levels in lung and breast cancer cells, but not in their normal counterparts. FN knockdown decreased cell aggregation and increased anoikis. In addition, cell detachment induced cell-cell adhesion proteins, including E-cadherin, desmoglein-2, desmocollin-2/3, and plakoglobin. Interestingly, FN knockdown decreased the levels of desmoglein-2, desmocollin-2/3, and plakoglobin, but not E-cadherin, suggesting the involvement of desmosomal junction in cell aggregation. Accordingly, knockdown of desmoglein-2, desmocollin-2, or plakoglobin reduced cell aggregation and increased cell sensitivity to anoikis. Previously, we reported that NADPH oxidase 4 (Nox4) upregulation is important for anoikis resistance. Nox4 inhibition by siRNA or apocynin decreased cell aggregation and increased anoikis with the downregulation of FN, and, consequently, decreased desmoglein-2, desmocollin-2/3, or plakoglobin. The coexpression of Nox4 and FN was found to be significant in lung and breast cancer patients, based on cBioPortal data. In vivo mouse lung metastasis model showed that FN knockdown suppressed lung metastasis and thus enhanced survival. FN staining of micro tissue array revealed that FN expression was positive for human lung cancer (61%) and breast cancer (58%) patients. Furthermore, the expression levels of FN, desmoglein-2, desmocollin-2, and plakoglobin were significantly correlated with the poor survival of lung and breast cancer patients, as per the Kaplan-Meier plotter analysis. Altogether, our data suggest that FN upregulation and enhanced desmosomal interactions are critical for cell aggregation and anoikis resistance upon cell detachment.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibronectinas/biossíntese , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células A549 , Animais , Anoikis/fisiologia , Neoplasias da Mama/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Agregação Celular/fisiologia , Linhagem Celular Tumoral , Fibronectinas/genética , Fibronectinas/metabolismo , Xenoenxertos , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , NADPH Oxidase 4/biossíntese , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Metástase Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise Serial de Tecidos , Regulação para Cima
7.
Cancers (Basel) ; 12(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151067

RESUMO

Novel strategies for overcoming multidrug resistance are urgently needed to improve chemotherapy success and reduce side effects. Ginsenosides, the main active components of Panax ginseng, display anti-cancer properties and reverse drug resistance; however, the biological pathways mediating this phenomenon remain incompletely understood. This study aimed to evaluate the anti-cancer effects of ginsenoside Rp1, actinomycin D (ActD), and their co-administration in drug-resistant cells and murine xenograft model of colon cancer, and explore the underlying mechanisms. ActD increased expression and activity of SIRT1 in drug-resistant LS513 colon cancer, OVCAR8-DXR ovarian cancer, and A549-DXR lung cancer cells, but not in ActD-sensitive SW620 colon cancer cells. Inhibition of SIRT1, either pharmacologically, with EX527 or through siRNA, stimulated p53 acetylation and apoptosis in LS513 cells when treated with ActD. ActD also increased AKT activation in drug-resistant cells. Inhibition of AKT abrogated ActD-induced upregulation of SIRT1, suggesting that the AKT-SIRT1 pathway is important in ActD resistance. Rp1 inhibited both ActD-induced AKT activation and SIRT1 upregulation and re-sensitized the cells to ActD. Synergistic antitumor effects of Rp1 with ActD were also observed in vivo. Our results suggest that combining Rp1 with chemotherapeutic agents could circumvent drug resistance and improve treatment efficacy.

8.
Lab Invest ; 99(8): 1157-1172, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30700846

RESUMO

Doxorubicin is a widely used DNA damage-inducing anti-cancer drug. However, its use is limited by its dose-dependent side effects, such as cardiac toxicity. Cholesterol-lowering statin drugs increase the efficacy of some anti-cancer drugs. Cholesterol is important for cell growth and a critical component of lipid rafts, which are plasma membrane microdomains important for cell signaling. 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMG-CR) is a critical enzyme in cholesterol synthesis. Here, we show that doxorubicin downregulated HMG-CR protein levels and thus reduced levels of cholesterol and lipid rafts. Cholesterol addition attenuated doxorubicin-induced cell death, and cholesterol depletion enhanced it. Reduction of HMG-CR activity by simvastatin, a statin that acts as an HMG-CR inhibitor, or by siRNA-mediated HMG-CR knockdown enhanced doxorubicin cytotoxicity. Doxorubicin-induced HMG-CR downregulation was associated with inactivation of the EGFR-Src pathway. Furthermore, a high-cholesterol-diet attenuated the anti-cancer activity of doxorubicin in a tumor xenograft mouse model. In a multivulva model of Caenorhabditis elegans expressing an active-EGFR mutant, doxorubicin decreased hyperplasia more efficiently in the absence than in the presence of cholesterol. These data indicate that EGFR/Src/HMG-CR is a new pathway mediating doxorubicin-induced cell death and that cholesterol control could be combined with doxorubicin treatment to enhance efficacy and thus reduce side effects.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Receptores ErbB/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Death Dis ; 8(2): e2621, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230863

RESUMO

Rab escort protein-1 (REP1) is linked to choroideremia (CHM), an X-linked degenerative disorder caused by mutations of the gene encoding REP1 (CHM). REP1 mutant zebrafish showed excessive cell death throughout the body, including the eyes, indicating that REP1 is critical for cell survival, a hallmark of cancer. In the present study, we found that REP1 is overexpressed in human tumor tissues from cervical, lung, and colorectal cancer patients, whereas it is expressed at relatively low levels in the normal tissue counterparts. REP1 expression was also elevated in A549 lung cancer cells and HT-29 colon cancer cells compared with BEAS-2B normal lung and CCD-18Co normal colon epithelial cells, respectively. Interestingly, short interfering RNA (siRNA)-mediated REP1 knockdown-induced growth inhibition of cancer cell lines via downregulation of EGFR and inactivation of STAT3, but had a negligible effect on normal cell lines. Moreover, overexpression of REP1 in BEAS-2B cells enhanced cell growth and anchorage-independent colony formation with little increase in EGFR level and STAT3 activation. Furthermore, REP1 knockdown effectively reduced tumor growth in a mouse xenograft model via EGFR downregulation and STAT3 inactivation in vivo. These data suggest that REP1 plays an oncogenic role, driving tumorigenicity via EGFR and STAT3 signaling, and is a potential therapeutic target to control cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinogênese/genética , Receptores ErbB/genética , Oncogenes/genética , Fator de Transcrição STAT3/genética , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Coroideremia/genética , Regulação para Baixo/genética , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação/genética , Transdução de Sinais/genética
10.
Biochim Biophys Acta ; 1841(1): 190-203, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24120917

RESUMO

Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function.


Assuntos
Apoptose/efeitos dos fármacos , Colesterol/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Proteínas Oncogênicas/metabolismo , Apoptose/genética , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Colesterol/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Microdomínios da Membrana/genética , Proteínas Oncogênicas/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos
11.
Biochem Pharmacol ; 85(10): 1441-53, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23473805

RESUMO

Multidrug resistance (MDR) is a major obstacle to effective cancer therapy. The membrane transporter MDR-1 (P-gp, ABCB1), a member of the ATP-binding cassette (ABC) transporter family, effluxes anti-cancer drugs from cancer cells. Increased activity of MDR-1 is known to be the main mechanism for multidrug resistance. MDR-1 is known to be localized in the cholesterol- and sphingolipid-enriched plasma membrane microdomains, known as lipid rafts. Disruption of lipid rafts by cholesterol depletion alters lipid raft functions, indicating that cholesterol is critical for raft function. Because ginsenosides are structurally similar to cholesterol, in this study, we investigated the effect of Rp1, a novel ginsenoside derivative, on drug resistance using drug-sensitive OVCAR-8 and drug-resistant NCI/ADR-RES and DXR cells. Rp1 treatment resulted in an accumulation of doxorubicin or rhodamine 123 by decreasing MDR-1 activity in doxorubicin-resistant cells. Rp1 synergistically induced cell death with actinomycin D in DXR cells. Rp1 appeared to redistribute lipid rafts and MDR-1 protein. Moreover, Rp1 reversed resistance to actinomycin D by decreasing MDR-1 protein levels and Src phosphorylation with modulation of lipid rafts. Addition of cholesterol attenuated Rp1-induced raft aggregation and MDR-1 redistribution. Rp1 and actinomycin D reduced Src activity, and overexpression of active Src decreased the synergistic effect of Rp1 with actinomycin D. Rp1-induced drug sensitization was also observed with several anti-cancer drugs, including doxorubicin. These data suggest that lipid raft-modulating agents can be used to inhibit MDR-1 activity and thus overcome drug resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ginsenosídeos/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Proteína Oncogênica pp60(v-src)/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Colesterol/metabolismo , Colesterol/farmacologia , Dactinomicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Oncogênica pp60(v-src)/genética , Proteína Oncogênica pp60(v-src)/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Rodamina 123 , Transdução de Sinais/efeitos dos fármacos
12.
Int J Cell Biol ; 2012: 306879, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505926

RESUMO

Metastasis is a multistep process including dissociation of cancer cells from primary sites, survival in the vascular system, and proliferation in distant target organs. As a barrier to metastasis, cells normally undergo an apoptotic process known as "anoikis," a form of cell death due to loss of contact with the extracellular matrix or neighboring cells. Cancer cells acquire anoikis resistance to survive after detachment from the primary sites and travel through the circulatory and lymphatic systems to disseminate throughout the body. Because recent technological advances enable us to detect rare circulating tumor cells, which are anoikis resistant, currently, anoikis resistance becomes a hot topic in cancer research. Detailed molecular and functional analyses of anoikis resistant cells may provide insight into the biology of cancer metastasis and identify novel therapeutic targets for prevention of cancer dissemination. This paper comprehensively describes recent investigations of the molecular and cellular mechanisms underlying anoikis and anoikis resistance in relation to intrinsic and extrinsic death signaling, epithelial-mesenchymal transition, growth factor receptors, energy metabolism, reactive oxygen species, membrane microdomains, and lipid rafts.

13.
Cancer Lett ; 323(2): 155-60, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22521547

RESUMO

IL-6 is a multifunctional cytokine that is important for immune responses, cell survival, apoptosis, and proliferation. However, little is known about the correlation between the IL-6 signaling pathway and DNA damage in human tumors. The present study demonstrates the role of the IL-6/STAT3 signaling pathway in human tumor cells exposed to DNA damage. Tumor cells exposed to DNA damage increase the expression and secretion of IL-6 and the phosphorylation of JAK1 and STAT3. The activation of the JAK1-STAT3 signaling pathway is inhibited by knockdown of gp130 or neutralization of soluble IL-6, implying that DNA damage induces the phosphorylation of JAK1 and STAT3 by autocrine IL-6. Interestingly, inhibition of the IL-6/STAT3 signaling pathway impairs the growth of tumor cells exposed to DNA damage and results in the induction of senescence. Therefore, the present study suggests that IL-6 inhibits senescence but promotes the survival and proliferation of tumor cells exposed to DNA damage through the activation of the JAK1-STAT3 signaling pathway.


Assuntos
Divisão Celular , Senescência Celular , Dano ao DNA , Interleucina-6/metabolismo , Neoplasias/patologia , Fator de Transcrição STAT3/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Inativação Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo
14.
Exp Mol Med ; 43(7): 389-92, 2011 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-21628992

RESUMO

Cellular senescence is a tumor-suppressive process instigated by proliferation in the absence of telomere replication, by cellular stresses such as oncogene activation, or by activation of the tumor suppressor proteins, such as Rb or p53. This process is characterized by an irreversible cell cycle exit, a unique morphology, and expression of senescence-associated-ß-galactosidase (SA-ß-gal). Despite the potential biological importance of cellular senescence, little is known of the mechanisms leading to the senescent phenotype. p41-Arc has been known to be a putative regulatory component of the mammalian Arp2/3 complex, which is required for the formation of branched networks of actin filaments at the cell cortex. In this study, we demonstrate that p41-Arc can induce senescent phenotypes when it is overexpressed in human tumor cell line, SaOs-2, which is deficient in p53 and Rb tumor suppressor genes, implying that p41 can induce senescence in a p53-independent way. p41-Arc overexpression causes a change in actin filaments, accumulating actin filaments in nuclei. Therefore, these results imply that a change in actin filament can trigger an intrinsic senescence program in the absence of p53 and Rb tumor suppressor genes.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Senescência Celular , Proteínas Recombinantes/metabolismo , Proteína do Retinoblastoma/deficiência , Proteína Supressora de Tumor p53/deficiência , Citoesqueleto de Actina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Fibroblastos/fisiologia , Humanos , Proteínas Recombinantes/genética , Proteína do Retinoblastoma/genética , Proteína Supressora de Tumor p53/genética
15.
Cancer Res Treat ; 38(4): 224-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19771247

RESUMO

PURPOSE: Recent studies have suggested that p53 regulates the G2 checkpoint in the cell cycle and this function is required for the maintenance of genomic integrity. In this study, we addressed a role of p53 in escaping from cell cycle G2 arrest following DNA damage. MATERIALS AND METHODS: Cell cycle checkpoint arrest in the human colon cancer cell line HCT116 and its derivatives carry p53 or p21 deletions, were examined by FACS analysis, immunoprecipitation, Western blot and IP-kinase assay. RESULTS: While the cells with functional p53 were arrested at both the G1 and G2 checkpoints, the p53-deficient cells failed to arrest at G1, but they were arrested at G2. However, the p53-deficient cells failed to sustain G2 checkpoint arrest and they entered mitosis earlier than did the p53-positive cells and so this resulted in extensive cell death. Cdc2 kinase becomes reactivated in p53-deficient cells in association with entry into mitosis, but not in the p53-positive cells. Upon DNA damage, the p21-deficient cells, like the p53-negative cells, not only failed to repress cdk2-dependent NF-Y phosphorylation, but they also failed to repress the expression of such cell cycle G2-regulatory genes as cdc2, cyclin B, RNR-R2 and cdc25C, which have all been previously reported as targets of NF-Y transcription factor. CONCLUSIONS: p53 is essential to prevent immature escaping from cell cycle G2 checkpoint arrest through p21-mediated cdk2 inactivation, and this leads to inhibition of cdk2-dependent NF-Y phosphorylation and NF-Y dependent transcription of the cell cycle G2-regulatory genes, including cdc2 and cyclin B.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA